
www.pythian.com | White Paper 1

This white paper documents the process of migrating data from Teradata to Google

Cloud Platform. It highlights several key areas to consider when planning a migration

of this nature, including pre-migration considerations, details of the migration phase,

and best practices.

This white paper takes a non-technical approach to process description and

provides example data pipeline architectures.

BEST PRACTICES FOR
MIGRATING TERADATA TO
GOOGLE CLOUD PLATFORM

Ekaba Bisong, Data Developer/ Scientist, Google Cloud Data Engineer

Gurinderbeer Singh, Data Developer

John Schulz, Principal Consultant

Kartick Sekar, Solutions Architect

Paul Melanson, Big Data Team Manager

Scott McCormick, Google Cloud Certified Solution Architect

Vladimir Stoyak, Principal Consultant for Big Data, Google Cloud Platform

Qualified Solution Developer

www.pythian.com | White Paper 2

MOTIVATORS TO MIGRATE 3

PERFORMANCE AND USAGE 4

DENORMALIZING DATA 5

MULTISET TABLES 5

SET TABLES 5

GLOBAL TEMPORARY TABLES 5

PARTITIONING 5

WILDCARDS 5

INFRASTRUCTURE, LICENSE AND MAINTENANCE COSTS 6

REPORTING, ANALYTICS AND BI TOOLSET 6

USABILITY AND FUNCTIONALITY 8

DATA MIGRATION 9

DATA TRANSFORMATIONS & INTEGRATION 9

LOGGING MONITORING & AUDITING 11

STACKDRIVER CONFIGURATION 11

MONITORING AND ALERTS 11

PROCESS FLOWS: TERADATA TO BIGQUERY 10

LOGGING 12

LOGS ACCESS 12

AUDIT CONTROL 13

MIGRATION APPROACH OPTIONS 15

JOB ORCHESTRATION 16

DATA LINEAGE 16

METADATA MANAGEMENT 17

DATA SOURCE #1 17

DATA SOURCE #2 18

DATA SOURCE #3 18

DATA SOURCE #4 19

DATA SOURCE #5 19

DATA SOURCE #6 20

CONCLUSION 20

www.pythian.com | White Paper 3

MOTIVATORS TO MIGRATE
Google BigQuery is a fully managed cloud enterprise data warehouse. It leverages

the power of Google’s technologically advanced storage and processing infrastructure

to provide an extremely fast, scalable, serverless, no-operations (No-Ops) database

solution to clients. This managed platform abstracts clients from the overhead burden

of storing and processing large datasets.

One key attraction of BigQuery as a preferred platform for enterprise data

warehousing is the reduction of operations, to treat the database as serverless. Going

serverless and No-Ops means that clients can immediately start using BigQuery as a

storage solution without bothering about configuring disks, warehouse security, high

availability, memory updates, load balancing, and so on.

Google BigQuery is a petabyte-scale low-cost enterprise data warehouse for analytics.

Customers find BigQuery’s performance and ease of use liberating, allowing them

to experiment with enormous datasets without compromise and to build complex

analytics applications such as reporting and data warehousing.

Some of the key reasons enterprises migrate off of Teradata:

• Technology fails to meet the needs of today’s business users, such as the

increasing requirement for unlimited concurrency and performance.

• Key data sources for the modern enterprise are already in the cloud. The

cloud also allows for new types of analytics to be assessed and refined

without a long-term commitment to infrastructure or specific tools.

• Pay-as-you-go cloud scalability without the need for complex reconfiguration

as your data or workloads grow.

Here are some of the main reasons that users find migrating to BigQuery an

attractive option.

• BigQuery is a fully managed, NoOps data warehouse. In contrast to Hadoop

systems, the concept of nodes and networking are completely abstracted away

from the user.

• BigQuery enables extremely fast analytics on a petabyte scale through its

unique architecture and capabilities.

• BigQuery eliminates the need to forecast and provision storage and

compute resources in advance. All the resources are allocated dynamically

based on usage.

https://cloud.google.com/bigquery/

www.pythian.com | White Paper 4

• BigQuery provides a unique pay-as-you-go’ model for your data warehouse and

allows you to move away from a CAPEX-based model.

• BigQuery charges separately for data storage and query processing, enabling

an optimal cost model—unlike solutions where processing capacity is allocated

(and charged) as a function of allocated storage.

• BigQuery employs a columnar data store, which enables the highest data

compression and minimizes data scanning in common data warehouse

deployments.

• BigQuery provides support for streaming data ingestions directly through an API

or by using Google Cloud Dataflow.

• BigQuery provides the ability to connect to federated (external) data sources

such as Google Cloud Bigtable, Google Cloud Storage (GCS) and Google Drive.

• BigQuery has native integrations with many third-party reporting and BI

providers, such as Tableau, MicroStrategy and Looker.

Here are some scenarios where BigQuery might not be a good fit.

• BigQuery is not an OLTP database. It performs full column scans for all columns

in the context of the query. It can be very expensive to perform a single row read

similar to primary key access in relational databases using BigQuery.

• BigQuery was not built to be a transactional store. If you are looking to

implement locking, multi-table transactions, BigQuery is not the right platform.

• BigQuery does not support primary keys and referential integrity.

• BigQuery is a massively scalable distributed analytics engine. Using it for

querying smaller datasets is overkill because you cannot take full advantage of

its highly distributed computational and I/O resources.

PERFORMANCE AND USAGE
In an analytical context, performance has a direct effect on productivity because

running a query for hours means days of iterations between business questions. It

is important to know that a solution will scale well not only in terms of data volume

but in the quantity and complexity of the queries performed.

For queries, BigQuery uses the concept of “slots” to allocate query resources

during query execution. A slot is simply a unit of analytical computation (i.e.,

a chunk of infrastructure) pertaining to a certain amount of CPU and RAM. All

projects, by default, are allocated 2,000 slots on a best-effort basis. As the use

of BigQuery and the consumption of the service goes up, the allocation limit is

dynamically raised.

https://cloud.google.com/dataflow/
https://cloud.google.com/bigtable/
https://cloud.google.com/storage/
https://www.google.com/drive/
https://www.tableau.com/
https://www.microstrategy.com/us
https://looker.com/

www.pythian.com | White Paper 5

DENORMALIZING DATA
It’s important to recognize that BigQuery uses a fundamentally different architecture

than Teradata, and a traditional star or snowflake schema may not perform as well

as could be expected. BigQuery offers the opportunity to store data from different

tables in the same table, speeding up data access considerably.

The preferred method for denormalizing data takes advantage of BigQuery’s

native support for nested and repeated structures in JSON or Avro input data.

Expressing records using nested and repeated structures can provide a more

natural representation of the underlying data. In the case of the sales order, the

outer part of a JSON structure contains the order and customer information, and

the inner part of the structure contains the individual line items of the order, which

are represented as nested, repeated elements.

MULTISET TABLES
Teradata multiset tables allow having duplicate rows unless explicit unique indexes are

defined on the table. In the latter case, the table will behave like an ordinary set table.

Multiset tables are mostly used on landing layers.

Multiset tables without unique indexes map directly to BigQuery tables. BigQuery has

no primary or unique key and no index concept. So, duplicate rows are allowed. For

such tables, only the most recent row per identifying column combination is returned

either in the direct query or through the so-called watermark view.

SET TABLES
In Teradata, set tables do not allow duplicate rows. Duplicates might just not be

added or an exception could be thrown depending on how the data was inserted.

In BigQuery there is no direct equivalent for such tables. Pythian recommends data

from all tables be deduplicated on fetch.

GLOBAL TEMPORARY TABLES
There is no concept of temporary tables in BigQuery. An alternative in BigQuery is

using a table per request with defined expiration time. After the table is expired it

is removed automatically from the BigQuery storage. The minimal expiration time

for a table is 3600 seconds.

PARTITIONING
BigQuery supports partitioning on a single column of one of the data types.

WILDCARDS
Querying multiple tables in BigQuery at once is also possible by using wildcard

queries. Additionally, the view can be added to run a wildcard query against all tables

in the group. If there is a need to query data for a single customer, a specific table

name can be specified. Though wildcard queries are less performant than querying a

partitioned table, this is a good way to control the volume of scanned data.

www.pythian.com | White Paper 6

INFRASTRUCTURE, LICENSE AND MAINTENANCE COSTS
With BigQuery, Google provides a fully managed serverless platform that

eliminates hardware, software and maintenance costs. BigQuery also reduces

efforts spent on detailed capacity planning, thanks to embedded scalability and

a utility billing model: services are billed based on the volume of data stored and

amount of data processed.

Here are the important specifics of BigQuery billing.

• Storage is billed separately from processing, so working with large amounts

of “cold” (rarely accessed) data is very affordable (price for data not edited for

>90 days drops by 50 percent).

• Automatic pricing tiers for storage (short term and long term) eliminate the need

for commitment to and planning for volume discounts; they are automatic.

• Processing cost is only for data scanned, so selecting the minimum number of

columns required to produce results will minimize the processing costs, thanks

to columnar storage. This is why explicitly selecting the required columns

instead of “*” can make a big processing cost (and performance) difference.

• Likewise, implementing appropriate partitioning techniques in BigQuery will

result in fewer data scanned and lower processing costs (in addition to better

performance). This is especially important because BigQuery doesn’t utilize

the concept of indexes that are common to relational databases.

• There is an extra charge if a streaming API is used to ingest data into BigQuery

in real time.

• Google provides a “fast-access” storage API for a higher cost. When you use

the BigQuery Storage API, structured data is sent over the wire in a binary

serialization format. This allows for additional parallelism among multiple

consumers for a set of results.

• Cost-control tools such as “Billing Alerts” and “Custom Quotas” and alerting or

limiting resource usage per project or user might be useful.

• Google offers a flat-rate pricing for customers who prefer a fixed-billing model

for data processing. Although usage-based billing might be a better option for

most of the use cases and clients, receiving a predictable bill at the end of the

month is attractive to some organizations.

REPORTING, ANALYTICS AND BI TOOLSET
Reporting, visualization and BI platform investments, in general, are significant.

Although some improvements might be needed to avoid bringing additional

dependencies and risks into the migration project (BI/ETL tools replacement),

keeping existing end-user tools is a common preference.

https://cloud.google.com/bigquery/cost-controls

www.pythian.com | White Paper 7

There is a growing list of vendors that provide a native connection to BigQuery

(https://cloud.google.com/bigquery/partners/). However, if native support is not yet

available for the BI layer in use, Google has partnered with Simba Technologies to

provide ODBC and JDBC drivers.

Many clients are often stuck with an older reporting platform that does not allow

them to take advantage of BigQuery’s architecture and optimizations. In those cases,

they often decide to move to a new platform quickly after the BigQuery migration.

This gives our clients the chance to take advantage of the many best practices in

reporting such as:

1. Multiple, smaller tools for specific jobs

2. Robust security models within the reporting platform or BigQuery

3. Cost optimization strategies

4. Centralized dimension datasets

5. Templating for rapid development

Traditional approaches for reporting and analytics often push the concept that one tool

should service all reporting requests. This can be a very expensive proposition, and

we recommend that BI functionality not be limited to a single tool, if possible. Even if

current use cases point to a single tool, it is still prudent to ensure that any reporting/

analytical solution refrains from embedding too much business logic in the tool itself.

Although many reporting environments provide a rich set of convenience functions,

utilizing these functions to provision common business logic will mean restricted reuse

and a requirement to duplicate the logic wherever the original tool can’t be used.

Security also plays a major factor. BigQuery currently does not support row level

or column level security at a table level. To facilitate this kind of security, a robust BI

tool can provide the desired controls. There are two alternatives for implementing

security within BigQuery. The first is to control user access at a dataset level using

ACLs and IAM Policies. The second is to implement data control structures joined in

for every query at the database level. This approach can be quite flexible, but can

also be a very complex and administratively intense undertaking.

Cost concerns also drive optimizations to reduce cost. In some instances, the BI

tool may support a caching mechanism to reduce the amount of CPU needed from

BigQuery. It is important to understand the various options available at the BigQuery

level and at the BI tool level. In addition, BI tools are not always efficient in generating

optimized queries and continuous analysis of long-running or high volume queries is

recommended. Tuning of these types of queries can make a significant difference in

managing cost; especially if these queries are frequently executed.

https://cloud.google.com/bigquery/partners/
https://cloud.google.com/bigquery/providers/simba-drivers/

www.pythian.com | White Paper 8

Of all the dimensions that may exist in the underlying data model, the time dimension

is easily one of the most critical. Although many BI tools provide convenience

functions for time transformations, we recommend that these transformations be

persisted at the database level. This will provide a convenience layer for persisting

time transformed aggregates into summary/aggregate tables.

Lastly, when evaluating a BI tool, it is important to understand the degree of abstraction

the tool can provide. This will enable strong inheritance rules and template driven

report development. Inheritance rules will provide a consistent means of enforcing

common definitions across calculations. Template support is a key capability for rapid

report development and if self-serve offerings are to be considered.

USABILITY AND FUNCTIONALITY
There may be some functional differences when migrating to a different

platform. However, in many cases, there are workarounds and specific design

considerations that can be adopted to address these.

BigQuery launched support for standard SQL, which is compliant with the SQL 2011

standard and has extensions that support querying nested and repeated data. The

query editor allows toggling between standard SQL and legacy SQL. Standard

SQL is more similar to conventional SQL, and this option is recommended.

It is worth exploring some additional SQL language/engine specifics and some

additional functions:

• analytic/window functions

• JSON parsing

• working with arrays

• correlated subqueries

• temporary SQL/Javascript user-defined functions

• inequality predicates in joins

• table name wildcards and table suffixes

In addition, BigQuery supports querying data directly from GCS and Google Drive.

It supports AVRO, JSON NL, CSV files as well as Google Cloud Datastore backup

and Google Sheets (first tab only).

Federated data sources should be considered in the following cases:

• Loading and cleaning your data in one pass by querying the data from a

federated data source (a location external to BigQuery) and writing the

cleaned result into BigQuery storage.

www.pythian.com | White Paper 9

• Having a small amount of frequently changing data that you join with other

tables. As a federated data source, the frequently changing data does not

need to be reloaded every time it is updated.

As a guideline, measurable metrics in at least the following three categories need

to be established and observed throughout the migration process: performance,

infrastructure/license/maintenance costs, and usability/functionality.

DATA MIGRATION
Typically for the initial load process, we export data from the source system into a flat

file and then loading it into BigQuery. GCP provides a service called the BigQuery

Data Transfer Service which has the connectors and tooling to export the data out of

your Teradata instance onto GCS and then subsequently load it into BigQuery. Find

more information on this service here. Please note that there are some data type

differences between Teradata and BigQuery. Generally, the most defensive data

type is used by default to be loaded on to BigQuery. In some cases where data types

cannot be directly inferred or there is a need to preserve to a compatible type it may

be necessary to do some additional massaging to the data in BigQuery.

Typical data migration strategies include a few steps:

1. Identify the base data set and point in time data (TD Queries) for the

initial load.

2. Use the data transfer service or an equivalent tool/process to extract the

base data to GCS and then import to BigQuery.

3. Identify process/queries for delta data (while the rest of the migration

process is ongoing) and Identify load of delta data to BigQuery.

4. Identify Data concurrency and consistency test cases.

5. Create the process for loading delta data from TD (via the extract to GCS)

process to BigQuery.

6. Execute the data concurrent & consistency test cases.

DATA TRANSFORMATIONS & INTEGRATION
Any data migration endeavor is incomplete without also moving the tooling that

processes, transforms and loads the data into the warehouse. In Teradata, this implies

the BTEQ and FLD scripts that are used for data loading and massaging.

Typical EDW processes use either an ETL (Extract, Transform & Load) or an ELT (Extract,

Load and Transform) strategy for data massaging. Both ETL & ELT strategies can be

used very effectively with BigQuery as the primary & final destination data store and

GCS as the staging (or ingest) or intermediate data store as required.

www.pythian.com | White Paper 10

Here are some methods that we have used for transformations:

For most batch based scenarios:

Extract:

Consider landing the source data in GCS in either JSON, AVRO, CSV or PARQUET

formats (there are other formats that are also supported). There are pros/cons to using

each of these formats for initial data export and subsequent loading to BigQuery.

For a deeper understanding of what format works best for your use case, find more

information here.

Transform & Load (or vice-versa):

Data transformation can happen with a number of tools available natively within the

GCP ecosystem as managed services. Some of the key tools available are:

Cloud Dataflow: Cloud Dataflow is a fully-managed service for transforming and

enriching data both in stream (real time) and batch (historical) modes. With its

serverless & fully managed approach to resource provisioning and management,

one can focus on the core transformational logic without worrying about capacity,

resources & scaling & underlying infrastructure.

Cloud Dataproc: Cloud Dataproc is a fully managed service for running Apache Spark

& Hadoop. Cloud Dataproc provides the management and capabilities for running

your transformations at scale with very efficient, fully managed and rapid provisioning

of clusters to run your jobs.

A few key points to consider when thinking about using Dataflow Vs Dataproc in terms

of their key capabilities:

Capability Dataflow Dataproc

Streaming & NRT

✓ X
Batch

✓ ✓
Iterative Processing &

Notebooks X ✓
Spark + Spark ML

X ✓
There are additional tools that enable the transformation process such as:

Cloud Composer: is a fully managed google implementation of Apache Airflow

that allows for orchestration, choreography for workflows and allows for authoring,

scheduling and monitoring these workflows.

https://cloud.google.com/bigquery/docs/loading-data
https://cloud.google.com/dataflow/
https://cloud.google.com/dataproc/
https://cloud.google.com/composer/

www.pythian.com | White Paper 11

Cloud Data Fusion: Cloud Data Fusion is a fully managed WYSIWYG GUI based

interface built on the open source CDAP project which allows for cloud-native data

integration without the need for writing extensive code. This has a rich ecosystem

of pre-built connectors and transformations and allows organizations to rapidly

develop and deploy data pipelines in the cloud.

Talking specifically about Load: BigQuery allows for a direct load of the data into

staging table from GCS (depending on the source data formats). In some cases,

the transformations for the data may be simple enough to ingest the source data

as is and create “views”

LOGGING MONITORING & AUDITING
Early-stage provisioning of logging processes and performance monitoring is

recommended to ensure the long-term success of a Google Cloud Platform

project. Stackdriver provides wide-ranging monitoring of Google Cloud Platform

resources to grant awareness and visibility across the platform.

STACKDRIVER CONFIGURATION
Accounts will hold the monitoring configurations for a group of Google Cloud

Platform projects. Each GCP project can only be associated with one Stackdriver

account. One option is to set up one Stackdriver account per GCP project. The

other option is to have a central Stackdriver account monitoring multiple GCP

projects. Within one Stackdriver account, users would have access to the same

dashboard and other resources.

Pythian uses a Stackdriver account for each environment within its own project. The

Stackdriver account will monitor both the running environment and its corresponding

control plane. Each project exports logs via an export sink to the project folder. We

also export to BigQuery for log auditing.

Every time a log entry arrives in a project, folder, billing account, or organization

resource, Stackdriver Logging compares the log entry to the sinks in that resource.

Each sink whose filter matches the log entry writes a copy of the log entry to the sink’s

destination. Since exporting happens for new log entries only, you cannot export log

entries that Stackdriver Logging received before your sink was created.

MONITORING AND ALERTS
Stackdriver agents gather system and application metrics from virtual machine

instances and send them to Stackdriver monitoring. By default, the agent collects

disk, CPU, network, and process metrics. You can configure the agent to monitor

third-party applications as well.

https://cloud.google.com/data-fusion/

www.pythian.com | White Paper 12

The following is a list of alerts that customers might be interested in setting up.

However, there are many additional metrics which can be used for alerting. The full

list per service can be found here.

LOGGING
Stackdriver Logging allows you to store, search, analyze, monitor and alert on log

data and events from GCP. The API also allows you to ingest any custom log data

from any source. Analyze high-volume application and system logs in real-time.

Logs are associated with GCP projects, however, the organization can also have

logs. The Logs Viewer only shows you log data for one GCP project at a time,

however, with the API you can review log entries for multiple projects at one time.

We leverage a combination of Stackdriver, GCS, and BigQuery Logs are processed

through Stackdriver and exported into GCS or processed by BigQuery.

Also See:

StackDriver Export Design Patterns

StackDriver Export

LOGS ACCESS
Access control provides flexible and effective tools that you can use to protect

sensitive data. In Google Cloud Platform access to logs are controlled at the

project level by IAM role(s) that are given to a user or service account. Roles can

include Stackdriver Logging IAM roles as well as legacy project roles which control

access to project resources including logging. Without any Stackdriver Logging

or project role, you cannot view the information in the Logs Viewer and cannot

use the Stackdriver Logging API or a command-line interface to access logging

information. IAM Logging roles include Logging permissions and can be assigned

to users, groups, and service accounts that belong to a project or other resource

that can contain logs.

https://cloud.google.com/monitoring/api/metrics_gcp
https://cloud.google.com/solutions/design-patterns-for-exporting-stackdriver-logging
https://cloud.google.com/logging/docs/export/

www.pythian.com | White Paper 13

Google recommends creating monitoring groups that will be assigned IAM logging

roles. Apply the same policies which exist today for accessing various log types.

Define which user groups should have specific IAM roles for logging and apply

them in the Stackdriver project as well as the project-level of the project(s) being

monitored by Stackdriver. IAM logging roles can be found here.

AUDIT CONTROL
Within Stackdriver, Cloud Audit Logging maintains three audit logs for each project,

folder, and organization: Admin Activity, Data Access, and System Event. Audit log

entries are written to these logs to answer the questions of “who did what, where,

and when?”

Admin Activity audit logs contain log entries for API calls or other administrative

actions that modify the configuration or metadata of resources. For example, the

logs record when users create VM instances or change Cloud Identity and Access

Management permissions.

Data Access audit logs record user-driven API calls that create, modify, or read

user-provided data. Please note this is data access outside of BigQuery for objects

such as GCS Buckets or Compute Engine.

System Event audit logs contain log entries for GCP administrative actions that

modify the configuration of resources. System Event audit logs are generated by

Google systems; they are not driven by direct user action.

Every audit log entry in Stackdriver Logging is an object of type LogEntry that is

characterized by the following information:

• The project or organization that owns the log entry.

• The resource to which the log entry applies. This consists of a resource

type from the Monitored Resource List and additional values that denote a

specific instance.

• A log name.

• A timestamp.

• A payload, which is the protoPayload type. The payload of each audit log

entry is an object of type AuditLog, a protocol buffer, and contains a field,

serviceData, that some services use to hold additional information.

Outside of Stackdriver, BigQuery supports two versions of log messages:

AuditData (the older version) and BigQueryAuditMetadata (the newer version).

The older AuditData log entries tend to map directly to individual API calls made

against the BigQuery service.

The newer format, BigQueryAuditMetadata, represents a better view into

BigQuery operations. BigQueryAuditMetadata provides details on how resources

are changed indirectly by other resources, particularly when reporting on

https://cloud.google.com/logging/docs/access-control#roles
https://cloud.google.com/logging/docs/reference/v2/rest/v2/LogEntry
https://cloud.google.com/logging/docs/api/v2/resource-list
https://cloud.google.com/logging/docs/reference/audit/auditlog/rest/Shared.Types/AuditLog

www.pythian.com | White Paper 14

asynchronous events and events that are not strongly coupled to a particular API

call. For example, the BigQueryAuditMetadata entries can report when BigQuery

tables are removed because of a configured expiration time. This is not possible

with the older logging format.

The BigQuery logs are automatically sent to Stackdriver for reporting and filtering.

DATA QUALITY/VALIDATION

We need to confirm whether our data was moved successfully. Finding a tool to

compare and make simple validations between environments is challenging.

We developed a framework for comparing datasets between environments using

a YAML-based configuration. We started with a few simple requirements.

1. Tests should be easily configurable using a YAML-based file structure

2. Tests should be grouped together so they can be run at certain times. For

example, after moving table1, table2 and table3, we’d want to run a test

proving that tables 1, 2 and 3 in the old and new environments matched.

3. We should have the ability to cache the test results for a dashboard but

force a refresh when necessary.

4. Any data transformation rules should be reflected in/tested by the QA

process.

5. We should be able to run simple counts tests as well as some ad-hoc

queries.

We then created a simple test framework.

An example test in the yaml configuration looks like this:

data_qa.yaml:

data_qa_group_01:
 tests:
 straight_counts_part_02:
 Type: SimpleCount
 Env_A: teradata_dev# Mapping in db_creds.py
 Env_B: bigquery_dev # Mapping in db_creds.py
 # List of tables in Environment A
 Tables_A: [customer, member, sales]
 # List of tables in Environment B
 Tables_B: [demo.customer, demo.member, demo.
sales]
 Assert: equal # Assert that counts are equal
 Notes: Refer to ticket ABC123
db_creds.py:

Environments = {
 ‘teradata_dev’ : {

www.pythian.com | White Paper 15

 ‘connection_type’:’teradata’,
 ‘jclassname’:’com.teradata.jdbc.TeraDriver’,
 ‘user’: ‘td_user’,
 ‘password’: ‘pass+word’,
 ‘host’: ‘127.0.0.1’,
 ‘database’: ‘dw_dev’,
 ‘raise_on_warnings’: False
 },
 ‘bigquery_dev’ : {
 ‘connection_type’:’bigquery’,
 ‘project_id’:’my-bq_proj’
 }
 }

Running a test to compare these three tables would be as simple as running the

following command (note that force_refresh is optional):

python data_qa.py --test_group data_qa_group_01 --force_
refresh True

MIGRATION APPROACH OPTIONS
The below diagram is a high-level overview of multiple source systems and a

Teradata instance that Pythian migrated to BigQuery.

www.pythian.com | White Paper 16

The source systems consisted of four active OLTP databases of either Oracle or

Sybase, a database of archive data which was not being changed, large sets of flat

files in various formats, and the Teradata instance itself.

For each of these systems, we needed to develop a means of ingesting the data,

a pipeline architecture to process and transform the data, and a combined data

model for the final reporting layer.

In addition, we needed a way to orchestrate the pipelines, a process to manage

data lineage and governance, CICD, and monitoring of the entire stack.

In this case, the customer had a requirement to stream the vast amount of their

data directly into BigQuery. Rather than pull the data out of BigQuery and do

transformations within Dataproc, we decided to use as much SQL logic as possible

and only used Dataproc where absolutely necessary.

JOB ORCHESTRATION
Cloud Composer is a managed workflow orchestration tool that allows users to

create, schedule, and monitor pipelines within GCP and on-premise. It is built on

top of Apache Airflow and uses the Python language for job definitions.

DATA LINEAGE
The Data Fusion offering from Google is used to track the lineage of data as it

flows through the pipelines. Metadata can be used to tag different components so

that they are easily identifiable and managed. This also helps in discovering new

components. For example, you can tag a dataset as experimental or an application

as production. These entities can then be discovered by using search queries with

the annotated metadata.

Using search, you can discover entities:

• That have a particular value for any key in their properties

• That have a particular key with a particular value in their properties

• That have a particular tag

You can find a dataset or a stream that has a “field with the given name” or a “field

with the given name and the given type”.

Lineage can be retrieved for dataset and stream entities. A lineage shows—for

a specified time range—all data access of the entity, and details of where that

access originated from.

www.pythian.com | White Paper 17

For example, writing to a stream can take place from a worker, which may have

obtained the data from a combination of a dataset and a (different) stream. The

data in those entities can come from (possibly) other entities. The number of

levels of the lineage that are calculated is set when a request is made to view the

lineage of a particular entity. In the case of streams, the lineage includes whether

the access was reading or writing to the stream.

In the case of datasets, lineage can indicate if dataset access was for reading,

writing, or both if the methods in the dataset have appropriate annotations. If

annotations are absent, lineage can only indicate that dataset access took place,

and does not provide an indication if that access was for reading or writing.

METADATA MANAGEMENT
Metadata Management within GCP is done via the Cloud Data Catalog service

(Currently in Alpha/Beta). Data Catalog is a centralized and unified data catalog

service for all cloud resources, where users and systems can discover data, explore

and curate its semantics, understand how to act on it, and help govern its usage.

Data Catalog is a fully managed metadata management service that simplifies data

discovery. It offers a search interface, with built-in access level controls. In addition,

there is a tool to organize business metadata as schematized tags, enabling

discovery of data within their organizations, and fostering a culture of data-driven

decision-making.

Data profiling and fingerprinting are performed using the Data Catalog service.

The service automatically analyzes data in both BigQuery and Pub/Sub to apply

tags and discover similar data throughout the project. In addition, manual tags

(via the console and API) can be applied by Ericsson personnel on datasets, data

streams, file sets, and other objects.

The service automatically ingests technical metadata for BigQuery and Cloud Pub/

Sub and captures business metadata in schematized format via tags, custom APIs,

and the UI, offering a simple and efficient way to catalog their data assets.

DATA SOURCE #1

www.pythian.com | White Paper 18

Initially, the data will be sent as CDC via the Oracle GoldenGate plugin directly into

a BigQuery dataset. The CDC messages will be read by the Data Fusion workflow

and placed into a pipeline.

The pipeline will transform the data into the required format. Pythian used a

BigQuery Action plugin within Data Fusion to perform this transformation in one

step.

DATA SOURCE #2

Initially, the data will be sent as XML via Kafka and Pub/Sub into a BigQuery

dataset using Dataflow as a simple pass-through mechanism. The messages are

read by the Data Fusion workflow and placed into a pipeline.

The pipeline transforms the data into the required format. Pythian used a BigQuery

Action plugin within Data Fusion to perform this transformation in one step.

DATA SOURCE #3

This is an Oracle source which is imported via a daily batch job. The data is

retrieved via Dataflow over a JDBC connection and placed into a BigQuery

dataset. Pythian used a BigQuery Action plugin within Data Fusion to perform this

transformation in one step.

www.pythian.com | White Paper 19

DATA SOURCE #4

The historic Teradata instance needed to be migrated as well. Pythian chose

to use the Teradata Hadoop Connector to migrate the data from Teradata into

BigQuery. We set up a Dataproc instance with the Hadoop connector installed and

wrote scripts to pull the data from the Teradata instance. The data will be pulled

over and stored in GCS Buckets, which will then be imported to BigQuery.

We chose to not use the Teradata Data Transfer Service because at the time it

did not allow us to write custom queries to pull the data, but required a datetime

column to be defined. Several tables within the Teradata instance did not have a

datetime column we could use, and so the entire table would have been pulled

every time.

DATA SOURCE #5

This data source was archived data from Teradata that was not being changed in

any way.

We performed the following steps to migrate this data:

• The customer copied the data files onto the Google Transfer Appliance.

• The data was shipped to Google and copied to a GCS Bucket

• Pythian created a SQL Server instance in GCP using the data files.

• Pythian wrote sqoop jobs to export the data and load into BigQuery

www.pythian.com | White Paper 20

After the data was loaded into BigQuery, we were able to reuse the pipelines from

data source #2 to move the data into the reporting layer.

DATA SOURCE #6

Finally, the customer had a large set of flat files in various formats which required

parsing, transformation, and aggregation.

This data was very large and was not landing directly within BigQuery, so we used

a more traditional approach with Dataproc as the main processing engine.

1. The data is pulled from the customer environments using Cloud Composer

and SFTP, and the files are stored in Cloud Storage.

2. Pipelines written Data Fusion call Dataproc jobs to read the files and parse

them.

a. As the raw files age, they are moved to long-term, cheaper storage

based on policies defined by Ericsson.

3. This job also transforms the data if needed, calculates KPIs, and loads the

data into BigQuery.

a. Similar to GCS Storage, as the data ages, it is placed in cheaper

storage automatically.

4. After loading into BigQuery, the data is aggregated and placed into a

second set of tables for reporting and KPI measurement.

CONCLUSION
There are plenty of motivations for migrating a Teradata instance to BigQuery.

BigQuery has a rapidly growing list of vendors and customers to provide native

connections and tooling. The launch of Standard SQL (which is soon to be the

default) will make data consumer transitions easier as well. Any data migration

process needs to consider the environment, the consumers of the data and the

timing.

Data type mapping is one of the more challenging issues, so it’s critical to

review and plan how data will be transformed as it is migrated into the BigQuery

environment.

www.pythian.com | White Paper 21

A migration from Teradata to BigQuery will require a thorough plan and

parallelizing Teradata and BigQuery to ensure data quality and consistency,

validating the data using reporting and data QA tooling.

As can be seen from this document, a very thorough understanding of the

current Teradata environment as well as Google Cloud Platform tools is required

for a successful migration. A company planning a lift & shift of their Teradata

instance and sources will not see the majority of the benefits in a modern cloud

environment.

Pythian recommends a deep dive into the following areas (and more!) to start a

project:

• Business Process Logic

• Teradata Data Model(s)

• BTEQ, Stored procedures, and other code

• Pipeline dependencies and scheduling requirements

• Monitoring, auditing, and logging requirements

• Security requirements for the entire stack

• Reporting requirements including KPIs and SLAs

• CICD and development processes

A realistic timeline for most migrations is almost certainly greater than nine months

and may be as much as 18 to 24 months.

Pythian’s team of experts have Teradata and Google Cloud expertise, as well

as decades of combined experience. We leverage our expertise to help you

maximize your throughput and mitigate risks while providing the best, custom

solution for you and your business.

Contact us to find out how Pythian’s analytics experts can help you meet

your goals faster, by aligning your business needs and your data strategy

and technology. Ask about special pricing on our Teradata to Google Cloud

Migration program offerings until August, 2019.

http://pythian.com/TD-to-GCP
http://pythian.com/TD-to-GCP

www.pythian.com | White Paper 22

Ekaba Bisong
Data Developer/ Scientist, Google Cloud Data Engineer

Gurinderbeer Singh
Data Developer

John Schulz
Principal Consultant

Kartick Sekar
Solutions Architect

Paul Melanson
Big Data Team Manager

Scott McCormick
Google Cloud Certified Solution Architect

Vladimir Stoyak
Principal Consultant for Big Data, Google Cloud Platform Qualified Solution

Developer

THE AUTHORS

V01-072019-NA

ABOUT PYTHIAN
Pythian excels at helping businesses around

the world use their data to transform how they

compete and win in the data economy. From cloud

automation to machine learning, Pythian leads

the industry with proven innovative technologies

and deep data expertise. For more than 20

years Pythian has built its reputation by delivering

solutions to the toughest data challenges faster and

better than anyone else.

New York City, USA

London, England

Hyderabad, India

OFFICES

Ottawa, Canada

+1-866-798-4426

linkedin.com/company/pythian

twitter.com/Pythian

info@pythian.com

